Example 1. Insufficiency of the optimality conditions
We have described the general scheme for solving optimal control problems and considered a specific example that proved our scheme to be highly effec​tive. However, perfect situations like this are by no means frequent. Unfor​tunately, there are numerous obstacles on the way of solving optimization problems, and we should get prepared to overcome them.
The first counterexample considered below is a rather simple optimiza​tion problem that differs from the previous one in the type of extremum only. Once again we use the maximum principle in the problem analysis. The re​sulting system of optimality conditions is easy to solve iteratively, using the method of successive approximations. However, it turns out that different initial approximations correspond to different limits of the sequence of con​trols. Moreover, we shall see that the values of the optimality condition is not the same for different limit controls.
These complications might imply some essential drawbacks in the scheme of solving optimal control problems described above. The optimal control turns out to be not unique in the considered example, while the solution of the problem is not the only function that satisfies the maximum principle. As a consequence, the system of optimality conditions has by no means a unique solution. Thus, even if the iterative process converges, we cannot guarantee that the problem does not have other solutions and that the resulting control is optimal.
We must establish the restrictions to be imposed on the system for the optimization problem to have a unique solution and for the optimality conditions in the form of the maximum principle to be necessary and sufficient. These conditions did hold in the previous example, which is why it could be solved successfully. In the next example, these conditions are guaranteed to fail, however, it will not prevent us from finding the solution.
1.1.    PROBLEM FORMULATION

We consider a rather simple example very similar to the previous one. Let the state of the system be described by the Cauchy problem
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(1.1)
The control u = u(t) is chosen from the set
U = {u |  | u(t) | ( 1,  t((0,1) }/
In this case, the optimality criterion is
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We now formulate the following problem of optimal control. 
Problem 1. Find a control u(U  that maximizes the functional I on U.
Remark 1.1. The only difference between Problem 1 and the previous example is in. the type of extremum.
Although the scheme of solving optimization problems described above involved minimizing the functional, this is a nonessential restriction. Clearly, a control that minimizes the functional — I will maximize the functional I. While for the minimization of I it is required to find the maximum of the function H, for the maximization of I we shall obviously need to minimize H. Therefore, we may use the above technique to analyze Problem 1.
Since this problem is very similar to the previous one, it may seem nat​ural to assume that there will be no unpleasant surprises and hope that the optimal control can be found with the same ease as before. However, it will be amazing to find that Problem 1 differs dramatically from the previous problem, and this fact will have far-reaching implications. 
1.2.    THE MAXIMUM PRINCIPLE
hi order to reduce the problem in question to the standard form described before, we introduce the following notation:
f(t,u,x) = u , x0 = 0 , T=1 , 
g(t,u,x) = (u2 + x2)/2 , (u1 = -1, u2 = 1 ,

This notation is the same as the one used in the analysis of the preceding example.
Following formula (3), we define the function
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Then the adjoint system (9), (10) becomes as follows:

[image: image4.wmf]0

)

1

(

  

;

  

)

1

,

0

(

  

,

 

=

Î

=

p

t

х

p

&



 (1.2)
In contrast to the previous problem, here we have to maximize the func​tional. Therefore, the problem that corresponds to the maximum condi​tion (13) is
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 (1.3)
Thus, we have three relations (1.1)—(1.3) for three unknown functions u, x, p. These relations differ from the system (14)-(16) only in the type of extremum of H.
As before, we first find the solution of the optimality condition (1.3) by expressing the control in terms of the other unknown functions. Equating the derivative of H to zero, we obtain
(H/(u =р – u =,
Hence, H has a unique point of local extremum и = p (obviously, the same as in the previous example). Since the second derivative of H is negative, we have the maximum. This means that H has no local minima at all. Therefore, the relative minimum of H may be achieved only on the boundary of the set of admissible controls. 
The boundary values are
H1)  =р  (1 + x2)/2 ,  H1)  =р  (1 + x2)/2.

The solution of the minimum condition (1.3) must correspond to the mi mum of these two values. Thus, we have the formula
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(1.4)
Given the solution of the adjoint system (see Figure 4), formula (1.4) allows us to find the desired control. Thus, (1.4) is similar to the result of (lie analysis of the problem of finding a relative maximum of H.
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Figure 4. The solution of the minimum condition (1.3) for a given p
Remark 1.2. As follows from formula (1.4), the desired solution can be discontinuous. However, this should not cause much trouble because examples of discontinuous controls are perfectly possible in practice: suppose a control system with a relay that operates at some point switching the system to a different mode. There is a wide range of practically justified extremum problems whose optimal controls are discontinuous.
So we have the system (1.1), (1.3), (1.4) for three unknown functions u, x, and p. As before, we shall solve the obtained problem using an iterative method. First, we solve the Cauchy problem (1.1) for a given control to find the corresponding system state. Then we solve the adjoint system (1.3) and determine the new approximation of the control using formula (1.4). This process continues up to the point of achieving the desired accuracy of Hie solution. It is not obvious that the described algorithm converges; therefore, the system of optimality conditions requires additional analysis
1.3.    ANALYSIS OF THE OPTIMALITY CONDITIONS
As follows from formula (1.4), the control may assume only two values, the choice being determined by the sign of p. In particular, suppose that
u(t) = 1 ,  t((0,1) ,
which holds when p is negative. Substituting this value into (1.1), we find the state
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Integrating this equality from t to unity, we have
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Hence, the function p = p(t) assumes only negative values for 
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. Then (1.4) implies that p corresponds to the control which is identically equal to unity.
We now conclude that the three functions
u(t) = 1 ,  x(t) = t ,  p(t) = (t2–1)/2 ,  t((0,1)
           (1.5)
are indeed the solution of the problem (1.1), (1.3), (1.4). In particular, if the control identically equal to unity is chosen to be the initial approximation, then the corresponding iterative process converges in one iteration. This is natural, since the initial approximation is a solution of the problem in this case.
We now assume that
u(t) = -1 ,  t((0,1),
which holds when p is positive. Substituting this function into equa​tion (1.1), we find the state
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Integrating this equality from t to 1, we have
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Hence, the function p = p(t) assumes only positive values for 
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. By formula (1.4), p corresponds to the control identically equal to —1. 
Thus, the three functions
 u(t) = -1 ,  x(t) = -t ,  p(t) = (1–t2)/2 ,  t((0,1) 
(1.6)
are also the solution to the problem (1.1), (1.3), (1.4). In particular, if the control identically equal to —1 is chosen to be the initial approximation, then the iterative process converges in one iteration step as well.
We have determined two solutions of the system (1.1), (1.3), (1.4). Our ultimate goal, though, is to solve the extremum problem rather than the optimality conditions. Therefore, an important question arises of whether the values of the functional I are the same for these solutions.
The calculations yield
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We see that the values of the functional are the same for both controls, i.e., both controls are equally valid solutions of the optimization problem.
Conclusion 1.1. The system (1.1), (1.3), (1.4) has two solutions such that the value of the functional is the same for both of them.
Note that the solutions (1.5) and (1.6) of the system of optimality condi​tions differ only in their signs. The question arises of whether this situation  is really extraordinary.
Suppose that a triple of functions и, х, р is a solution to the system  (1.1), (1.3), (1.4). Then the following relations hold:
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Finally, equality (1.4) yields
Thus, the triple — u, —x, —p is also a solution to the system.
Conclusion 1.2. If a triple of functions и, х, р is a solution to the system (1.1), (1.3), (1.4), then the triple -u, -x, -p is also a solution to the system.
So it is a property of the system of optimality conditions to have a pair of solutions that differ only in their sign. At the same time, the optimality conditions follow directly from the original formulation of the optimal control problem. Consider an arbitrary admissible control и corresponding to a solution x of problem (1.1). Then the control -u belongs to the set of admissible controls (since the minimum and maximum values of the control differ only in their signs). As noted before, the function -x is a solution to problem (1.1) corresponding to the control -u. As a result, we obtain
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Thus, the functional I(u) assumes the same values for the controls и and -u.
Conclusion 1.3. If a control и provides the maximum of the func​tional I on U, then the control -u also maximizes this functional on U.
Thus, the formulation of the optimal control problem already implies the existence of a pair of solutions.
Remark 1.3. We shall often use this kind of technique in the situa​tions where solutions are not unique (in particular, see Examples 7 and 8). We shall seek a transformation that takes one solution of the problem into another. Then, having found a solution of the problem, we shall use the transformation to find a new solution.
Remark 1.4. The previous example has all the properties pointed out in Conclusions 1.2 and 1.3, but its system of optimality conditions and optimal control problem (minimization of the functional I on U) have a unique solution. The reason is that the corresponding functions u, x, and p are identically equal to zero in that example. Therefore, changing the sign does not lead to a new solution. In the last example, the solution is necessarily nontrivial (since the trivial control provides the minimum of the functional); therefore, by changing the sign we obtain a new solution.
In the last example, the optimal control problem turned out to have more than one solution. In the next section we shall find out the difference between Problem 1 and the previous problem that lead to this situation.
1.4.    UNIQUENESS OF THE OPTIMAL CONTROL
It should not be surprising that some extremum problems have unique so​lution and some don't. For example, the trivial problem of minimizing the simplest quadratic function
f  =  f (x)  =  x2
on the interval [—1,1] has a unique solution, while the problem of maximizing it has two solutions (see Figure 5).
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Figure 5. The parabola has one minimum and two maxima in [-1,1]
The question is: What is the difference between the functions f(x) = x2 and g(x) = — x2 (maximizing f is equivalent to minimizing g) that causes one of them to have one minimum on [—1,1] and the other to have two? Evidently, the property of convexity is the key.
The function f = f(x) is said to be convex on the segment [a, b] if the following inequality holds:
f [х + (1–) у]  (  f(х) + (1–) f(у)  (х,у([а,b] , ((0,1),
If this inequality turns into equality only if x = y, then f(x) is called strictly convex. Geometrically, the convexity of f means that the segment of the curve f = f(x) that connects the points (x, f(x)) and (y,f(y)) lies not higher (or, in the case of strict convexity, lower) than the segment of the straight line connecting these points (see Figure 6).
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Figure 6.   Convexity of functions:   a) strictly convex function; 
b) nonconvex function; c) convex, but not strictly convex function

A simple example shows that strict convexity is required for the existence of a unique minimum (see Figure 7).
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Figure 7. A minimum may be not unique if the function is not strictly convex

This definition of convexity can be naturally generalized to the case of functionals on a vector space (for example, the Euclidean space). Let a functional I be defined on a subset U of a vector space. The set U is called convex if for any two points 
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 (the segment of the straight line connecting x and y) belongs to U (see Figure 8).
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Figure 8. Convexity of sets: a) convex set; b) nonconvex set
A functional I defined on a convex set U is called convex if the following inequality holds:
I [u + (1–) v] ( I(u) + (1–) I(v)  (u,v(U , ([0,1] .
The definition of strict convexity for functionals is the same as for functions and requires that the inequality be strict for 
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We shall now formulate a simple uniqueness theorem for minima of a functional.
Theorem 2. A strictly convex functional defined on a convex set can have at most one point of minimum
Proof. Suppose that a strictly convex functional I on a convex set U has two different points of minimum, x and y. Then the element 
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Since the functional is strictly convex, we have
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The value of the functional at the chosen element of U is less than its minimum on U. The assumption that there are two points of minimum lead to a contradiction.  □
Remark 1.5. Certainly, a nonconvex functional may have a unique minimum too (see Figure 9). Theorem 2 guarantees uniqueness only in the case of strictly convex functionals.
Remark 1.6. Theorem 2 only implies that if a solution of the problem of minimizing a strictly convex functional exists, and then it is the only one. The theorem does not concern the problem of existence of solutions.
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Figure 9. A nonconvex function may have a unique minimum
1.5.    UNIQUENESS OF AN OPTIMAL CONTROL IN A SPECIFIC EXAMPLE

We now show that Theorem 2 can be used to establish the uniqueness of optimal control in the problem of minimizing the functional I defined in the example below; however, this theorem is not applicable in the case of maximizing I. First of all, note that Theorem 2 has to be adapted for optimization problems. The reason is that the dependence of the optimality criterion on the control is not only described explicitly, but is also expressed through the system state related to the control by problem (1.1). This circumstance, however, is not an insuperable obstacle.
Let 
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[image: image36.wmf]2

,

1

  

;

  

0

)

0

(

  

,

  

)

1

,

0

(

  

,

 

=

=

Î

=

i

х

t

u

x

i

i

i

&


Multiplying the first pair of these equalities (with i = 1) by 
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 and the second pair by (1–α) and summing the results, we have
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At the same time, denoting by 
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 the solution of problem (1.1) corresponding to the control u3 = u1 + (1–u2, we obtain the conditions
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Consequently,
х3  х1 + (1–х2 


  (1.7)
We now estimate the quantity
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Since the quadratic function is strictly convex for t € (0,1), we have
[u3(t)]2  =  [u1(t) + (1–u2(t)]2  < u1(t)]2 + (1–u2(t)]2 ,

[x3(t)]2  =  [x1(t) + (1–x2(t)]2  < x1(t)]2 + (1–x2(t)]2 .

Integrating these expressions, we obtain the inequality
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Thus, the functional I = I(u) is strictly convex. From Theorem 2, it follows that the problem of minimizing I(u) on U  has a unique solution. At the same time, Problem 1 implies maximizing I, which is equivalent to minimizing -I. The functional - I satisfies the above inequalities with reversed sign, which means strict concavity and does not guarantee the uniqueness of solutions (see the rightmost picture in Figure 5). The obtained results demonstrate why the properties of the problem of minimizing the functional are so much different from those of the problem of maximizing the functional.
Remark 1.7. It should be noted that the convexity analysis of functionals in optimal control problems of the general form is not as easy as it may seem. In the considered case, the desired result was due to the equality (1.7), which implies linear dependence of the state function on the control. The reason is that the equations of problem (1.1) contain only the first powers of both the control and the system state. Establishing the convexity of the functional even for rather simple nonlinear equations is a very complicated problem. There are substantial difficulties even in the case of bilinear sys​tems (which contain the first powers of the control, the system state, and their product). For these kinds of systems, the cases where the uniqueness, of optimal control can be established are extremely rare.                                                                                                                                                                                          
1.6.    FURTHER ANALYSIS OF OPTIMALITY CONDITIONS

Having found the reasons for the optimal control in Problem 1 to be nonunique, we now return to the system (1.1), (1.3), (1.4). We already found two solutions of this system that differed only in their signs. The question arises of whether this system has other solutions?
It may seem that all possible situations have been analyzed. As follows from formula (1.4), the control may assume only two values depending on the sign of p. The constant values of the control determined above correspond to the case where the solution of the adjoint system is of constant sign. However, this function does not necessarily have to be of constant sign.
Assume that there exists a point 
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(1.8)

Evidently, the corresponding solution of problem (1.1) for 
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Thus, the state of the system for the control (1.8) is given by
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Since the value of the adjoint system state at the final instance is known, we first determine the solution of (1.3) for 
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We shall seek a function p that changes its sign at 
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. Thus, we have the condition
р()  =  (1 – ) (1 – 3)/2 = 0 .
This quadratic equation for 
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 that has two solutions, 
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So there exits a unique point 
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 where the solution of problem (1.3) may vanish. Considering the equation on the interval (t, 1/3) for arbitrary 
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Thus, the solution of the adjoint system is given by the formula
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The function p is obviously negative for t < 1/3 and positive for t > 1/3. Then, by (1.4), the control is written as
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(1.9)
which coincides with formula (1.8) for 
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From the above analysis, we conclude that the system (1.1), (1.3), (1.4) has one more solution such that the control is discontinuous, the system state is not differentiable, and the solution of the adjoint system changt its sign at the point 
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. The existence of the third solution of the optimality conditions which differs dramatically from the other two seems to be a bad sign. Moreover, as we know, functions that differ from solutions of (1.1), (1.3), (1.4) only in their signs are also solutions of this system (which means that the fourth solution exists).
Conclusion 1.4. The system (1.1), (1.3), (1.4) has at least four solu​tions.
We know that the values of the functional I for the first two controls (identically equal to 1 and -1) coincide. It is also clear that / assumes the same values on the third and the fourth controls. However, it is not obvious whether the values of the optimality criterion for the first and third controls coincide
Uo- the set of optimal controls [Ц - the set of solutions of the optimal controls
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Figure 10. Relation between the set of optimal controls and the set of solutions of the optimality condition
We now determine the value of the functional at the control given by (1.9):
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This value is different from the one found before.
Conclusion 1.5. Different solutions of the system (1.1), (1.3), (1.4) provide different values of the functional
If the values of the optimality criterion do not coincide for different controls, this means that some of the obtained solutions are worse than others because they do not provide the maximum of the functional being maximized.
Conclusion 1.6. Wot every solution of the optimality conditions is optimal, i.e., the optimality conditions are not sufficient.
Thus, solving the system of optimality conditions may yield nonoptimal controls. It is interesting to find out why not every solution of the maximum principle is the optimal control and why the optimality conditions appear to be sufficient in the previous example.
1.7.    SUFFICIENCY OF THE OPTIMALITY CONDITIONS
The procedure used to derive the optimality conditions in the form of the maximum principle was as follows. If a certain admissible control is optimal, then the corresponding increment of the functional must be nonnegative. Then we transformed the formulas for the increment of the functional to obtain the maximum condition. Thus, the optimality of the control implied that the maximum principle was satisfied, which means that the optimal​ity conditions are necessary (Figure 10). The sufficiency of the optimality condition means that every solution of the condition is an optimal control (Figure 10). If it doesn't hold, then the arguments used to prove that the optimality of a control implies the maximum principle being satisfied are ir​reversible. The question is: At which stage of our arguments did they become irreversible?
We now return to the procedure of deriving the maximum principle. The assumption that a control и is optimal means that
(I  =  I(v,y) – I(u,x) ( 0  (v(U ,                       (4)
where x and у are the functions of the system state on the controls и and v, respectively. Condition (4) is equivalent to
(L  =  L(v,y,) – L(u,x,) ( 0  (v(U , (
 (5)
where L is the Lagrange functional. After a series of transformations, in​equality (5) was reduced to the form
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With p chosen to be a solution of the adjoint system, inequality (8) became as follows:
 
[image: image70.wmf].

,

0

0

U

v

Hdt

T

u

Î

"

³

+

D

-

ò

h

 

(11)
Up to this point, all the arguments were reversible. Indeed, if a function и satisfies inequality (11), then any increment of the Lagrange functional at this control is nonnegative for the chosen p. However, by definition, the Lagrange functional coincides with the optimality criterion for any p (including the solution of the adjoint system). This implies (4) and therefore the optimality of the control u.
Our further arguments were as follows. Since the remainder term η is the second order term in the control increment, whereas the integral in the left-hand side of (11) is the first order term, it follows that for all controls v sufficiently close to u, the sign of their sum will be defined by the sign of the integral. Hence
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For a control v, we took the spiky variation
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where 
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 is a sufficiently small positive parameter. Dividing the left-hand side of inequality (12) by 
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which becomes the maximum condition
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(13)
since the point r and the control w are arbitrary.
Assume that the control и satisfies the maximum condition (13) (and, consequently, the preceding inequality). Integrating the inequality, we estab​lish that (12) holds as well (up to the designation of the arbitrary control). Now, if we could obtain inequality (11), then (4) would follow, which would mean that the control is optimal. Thus, the only "suspicious" stage of our arguments in deriving the maximum principle is the passage from (11) to condition (12).
Conclusion 1.7. The optimality conditions arc not sufficient because relations (11) and (12) are not equivalent.
Note that the optimality conditions were sufficient in the preceding ex​ample, which means that (11) and (12) were equivalent in that case. In this connection, it would be interesting to establish conditions that guarantee the sufficiency of the maximum principle. If a control и provides a mini​mum of the functional I, then it satisfies (12), which can be written in the form.
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Evidently, if we add a nonnegative quantity to the left-hand side of this inequality, then its sign will not change. Assume now that the remainder term tj is nonnegative. Then, adding η to the integral in the left-hand side of the foregoing inequality, we obtain (11), which implies the optimality of u, as we already know. Thus, we have established that the solution of the maximum principle is optimal and, consequently, the optimality conditions arc sufficient for the previous example.
Theorem 3. If the remainder term in the formula for the increment of the functional to be minimized is nonnegative, then the maximum principle is the sufficient optimality condition.
Remark 1.8. Obviously, for the problem of maximizing the functional, the sufficiency of the optimality condition is guaranteed by the condition η<0.
Remark 1.9. The obtained results do not imply that the maximum principle is not a sufficient optimality condition when η is negative. We can only assert that the above procedure of proving sufficiency does not work for negative values of η. We emphasize that the sufficiency of the maximum principle, according to Theorem 3, is due to the remainder being of fixed sign rather than being small. The optimality of any solution of the maximum principle can certainly be guaranteed if η is sufficiently small, regardless of its sign.
1.8.    SUFFICIENCY OF THE OPTIMALITY CONDITIONS IN A SPECIFIC EXAMPLE

We now try to establish the sufficiency of the maximum principle for the considered example following Theorem 3. For this purpose, we write the remainder term in the explicit form. As is known, in the general case, it is defined by the formula
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Here η1 represents the second order terms in the expansion of 
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In our example, we have 
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 since the derivative Hx is independent of the control. Thus, the only remaining quantity is
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The following formula holds:
H =р u – (u2 + x2)/2 .
Consequently,
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which implies
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By Theorem 3, the maximum principle for the example in question guaran​tees the optimality of the control.
Conclusion 1.8. The sufficiency of the optimality conditions in the form of the maximum principle in Problem 0 follows from the condition that the remainder is nonnegative.
It remains to find out why analogous results cannot be obtained for Prob​lem 1. This problem deals with the maximum of the functional I, which means that all signs in the above inequalities must be reversed. In particular, the optimality condition is equivalent to the inequality
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instead of (10). Furthermore, the solution of the optimality condition (the problem of minimizing the function H) will satisfy the inequality
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instead of (11), where H (and, consequently, 
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) is denned the same way as before, since the examples differ only in their extremum types.
The solution of the optimality condition for Problem 1 must satisfy the foregoing inequality. However, if we add a nonnegative 
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 to the integral in the left-hand side, then, in contrast to the previous case, the sign of the inequality may change. Then the previous condition, which is equivalent to the optimality of the control, may fail. Hence, the optimality condition for Problem 1 is not sufficient. 
Conclusion 1.9. The fact that the optimality condition in the form of the maximum principle in Problem 1 is not sufficient is due to the sign of the remainder term in the formula of functional increment.
We still have to find out what properties of the formulation of the original problem caused the optimality conditions to be sufficient in one case and not sufficient in the other. For this purpose, we should understand what condition guarantees that 
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 is nonnegative.
First of all, for the equality to hold, it is sufficient that the functions f and g that appear in the state equation and the functional being minimized can be written in the form
f(u,x) = f1(u) + f2(x) ,  g(u,x) = g1(u) + g2(x).
Under these conditions, we have
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Since the solution p of the adjoint system is not known yet (it will be determined when solving the optimality conditions), it will be possible to determine the sign of 
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 only if the coefficient of p vanishes. This certainly happens if 
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 is linear with respect to x. Under these assumptions, we have
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It is easy to see that 
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 is nonnegative if 
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 is convex.
Conclusion 1.10. The maximum principle is sufficient if the right-hand side of the state equation and the integrand in the expression for the functional to be minimized can be represented as the sum of a function depending on the control and a function depending on the system state, the equation being linear and the functional being convex with respect to the state.
Remark 1.10. This conclusion still holds if the functions of the gen​eral form that appear in the problem formulation explicitly depend on the parameter t.
It is evident that Example 0 satisfies the above requirements, whereas Example 1 does not, which explains the results obtained above. 
Remark 1.11. The maximum principle may still be a sufficient opti​mality condition if the conditions of the above conclusion do not hold (see Remark 1.9).
Remark 1.12. In more complex optimal control problems, it is usually impossible to determine the sign of the remainder term in the formula for the functional increment. The problem of establishing the sufficiency of the maximum principle for nonlinear systems is extremely complicated.
The question arises of whether the sufficiency of the maximum principle is a common or rare case. Since it is guaranteed only when the remainder term is of fixed sign or when it is small, we conclude that it holds, only in exceptional cases.
Conclusion 1.11. The optimality conditions in the form of the maxi​mum principle are sufficient only in exceptional cases.
Remark 1.13. It should be noted that almost every positive property in mathematics usually appears to be rare.
1.9.    CONCLUSION OF THE ANALYSIS OP THE OPTIMALITY CONDITIONS

The analysis of the optimality conditions in the form of the maximum prin​ciple is not finished at this point. We already know that the system (1.1), (1.3), (1.4) has at least four solutions, two of them being nonoptimal con​trols. However, it is still not clear whether we have found all solutions of the system.
By (1.4), the control must be piecewise- const ant. The first two solu​tions were obtained under the assumption that the control is constant or, equivalently, that the function p is of constant sign. The assumption that yielded the next two solutions was that the control has one point of dis​continuity and p changes sign at one point. However, the control could be discontinuous at two points of the interval (0.1). For example, it may be as follows:
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It is possible only when p is positive in the intervals 
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The corresponding solution of problem (1.1) is given by the formula
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Integrating the adjoint equation over the intervals 
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Consequently,
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Dismissing the trivial solutions 
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 (because they don't provide two points of discontinuity of the control), we obtain
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Hence, there exists a unique pair of points 
[image: image110.wmf]5

/

1

1

=

t

 and 
[image: image111.wmf]5

/

3

2

=

t

 with the desired properties.
We now determine the sign of p in each of the intervals. For 
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Finally, for 
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Thus, the sign of p is coordinated with the behavior of the control, i.e., equality (1.4) holds. This means that we have obtained the fifth solution of the system of optimality conditions. The sixth solution can be obtained from the fifth by changing its sign.
The above arguments can be generalized. For an arbitrary k = 1, 2,..., we divide the segment [0,1] into 2k+1 equal segments. Then we set the control to be equal to 1 on the first segment, —1 on the next two segments, +1 in the next two, and so on. The resulting function is denoted by 
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 of problem (1.1) is piecewise-linear, and the solution 
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 of problem (1.3) is a differentiable function which changes sign at the points of discontinuity of the control (see Figure 11). 
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Figure 11. Solutions of the system of optimally conditions in Problem 1
The function 
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 is also a solution. Thus, for any k (the num​ber of points of discontinuity), there are exactly two controls satisfying the optimality conditions.
Conclusion 1.12. System (1.1), (1.3), (1.4) has infinitely many solu​tions.
We now have to find out which of the solutions of the optimality con​ditions is optimal.   To answer this question, we write the values of the functional
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This formula shows that the value of the functional decreases as k increases.
Conclusion 1.13. Problem 1 has only two solutions: the controls iden​tically equal to 1 and -1.
The solution of the problem in question is now complete.
Remark 1.14. Note that we have solved the problem completely despite the fact that the maximum principle is not a sufficient optimality condition. In this case, first of all, the maximum principle is used to select the set of all solutions of the optimality conditions. Then the best controls (in the sense of the value of the functional) are selected from the set of solutions of the maximum principle. These controls are optimal.
SUMMARY

Our analysis of Problem 1 could be considered finished at this point, for its solution has been found. However, we would like to make some important and interesting remarks.
First, it is interesting to learn more about the properties of nonoptimal solutions of the maximum principle. The simplest example of a necessary but not sufficient condition for a function to have an extremum is the vanishing of its derivative at a given point (Fermat's theorem on stationary points). All the solutions of the relation in question are either points of local extremum or points of inflection. One would expect that nonoptimal solutions of the maximum principle also have specific properties related to the maximized functional I.
In particular, we can verify that the functions 
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 provide the maximum of I on the set of all functions discontinuous at t = 1/3. Moreover, they provide the extremum of I on the class of all functions with the absolute value of 1 that have a unique point of discontinuity. Indeed, let и=1 for t <
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  and и = -1 for t >
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 . Then the following function is a solution of problem (1.1):

[image: image129.wmf]î

í

ì

=

>

<

.

,

  

при

  

при

  

,

 

-

 

2

    

,

  

   

  

  

)

(

x

x

x

t

t

t

t

t

х


We now determine the corresponding value of the functional:
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The function I = I(ξ) has two points of extremum 
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 in [0.1]. The first one is associated with the continuous control and corresponds to the solution of Problem 1. The point 
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 is a point of minimum of the function I =I(ξ) on [0,1] and, consequently, it provides the minimum of the functional on the class of functions identically equal to 1 that have a unique point of discontinuity (see Figure 12). 

[image: image134.wmf] 

I

 

ξ

 

1/3

 

1

 


Figure 12. Dependence of the functional on the point of discontinuity of the control
Other nonoptimal solutions of the maximum principle have similar prop​erties.
Conclusion 1.14. Nonoptimal solutions of the optimality conditions possess specific properties related to the optimality criterion.
Another interesting conclusion can be made if we rewrite the sys​tem (1.1), (1.3), (1.4) in a different form. Excluding и and x from the system, we obtain the boundary value problem
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(1.10)
where F(p) stands for the right-hand side of (1.4). Since problem (1.4) is equivalent to the original system of optimality conditions, we arrive at the following conclusion on possible properties of boundary value problems for nonlinear differential equations of the second order.
Conclusion 1.15. Boundary value problem (1.4) has infinitely many solutions.
Remark 1.15. In further examples, we shall consider boundary value problems for nonlinear differential equations of the second order with even more interesting properties (see Examples 3, 7, and 8).
We now consider the nonlinear heat conduction equation 
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with the boundary conditions 
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and with certain initial conditions, where the function F has the same form as in (1.10). Evidently, the the equilibrium state for the system (1.11), (1.12) is a solution of the boundary value problem
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which coincides with problem (1.10) up to the notation. Then, based on the results obtained before, we arrive at the following conclusion specifying characteristic features of boundary value problems for nonlinear parabolic equations.
Conclusion 1.16. The system (1.11), (1.12) has infinitely many equi​librium states.
Arriving at a specific equilibrium state obviously depends on the initial state of the system.
Remark 1.16. The foregoing assertion can be used in an algorithm of finding various solutions of the boundary value problem (1.10) and, conse​quently, the whole system of optimality conditions. For the given system, this corresponds to the stabilization method. 
The analysis of Problem 1 is now complete. Examples 2, 7, and 8 contain
the description of other cases where optimality conditions are not sufficient.
The following conclusions can be made based on the analysis of Prob-
1. Optimal controls obtained in the process of solving optimization prob​lems may be nonunique.
2. An optimal control can be unique only in exceptional cases, for exam​ple, when the functional to be minimized is convex.
3. Not every solution of the maximum principle is an optimal control. This means that the optimality condition is not sufficient.
4. Optimality conditions in the form of the maximum principle are suffi​cient only in exceptional cases, for example, if the remainder term in the formula for the functional increment is nonnegative.
5. The remainder term is necessarily nonnegative for linear systems such that the functional to be minimized has an integral form, the integrand being the sum of a function depending only on the control and a convex function depending only on the state.
6. If the optimality condition .is not sufficient, complete solution of the problem on the basis of this condition still might be possible.
7. It is possible to find out that a solution of the optimality conditions is nonunique by specifying different initial approximations and observing the convergence of the iterative process to different limits.
8. Optimality conditions prove to be not sufficient if the value of the functional to be minimized turns out to be smaller than the limit value at some intermediate iteration step.
U0-the set of optimal controls


U1-the set of solutions of the optimal controls
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